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In everyday life, we are surrounded by dynamic ob-
jects. In road traffic, we routinely estimate the velocity of 
cars in order to cross the road. In sports reports on tele-
vision, we are able to follow the complex choreography 
of a basketball game; and in educational scenarios, we 
have to deal with learning environments that present us 
with animated depictions of chemical reactions. In order 
to acquire a deeper understanding of how learners explore 
such dynamic visualizations, eyetracking methods have 
increasingly become a focus of experimental research. To 
facilitate the analysis of eye-movement data recorded with 
dynamic content, the tool DynAOI is introduced in the 
present article.

Analyzing eye-movement data is a popular means 
of gaining insight into attentional and cognitive pro-
cesses. It has been used extensively in reading research 
(e.g.,  McDonald & Shillcock, 2003; Rayner, 1998; Vitu, 
Brysbaert, & Lancelin, 2004) and in research on scene 
 perception (e.g., Brockmole & Henderson, 2007; Hen-
derson, Weeks, & Hollingworth, 1999; Rayner, Smith, 
Malcolm, & Henderson, 2009). Within this research, eye 
movements have usually been classified as fixations or 
saccades and thereafter have been analyzed using fixation 
and saccade metrics (e.g., fixation duration), scan paths, 
or areas of interest (AOIs).

More recently, researchers started analyzing gaze data 
that were recorded with dynamic stimulus material. There 
are some studies that use measures that are unrelated to 
the dynamics, such as the distance of eye fixation to a 
critical place at a single point in time (Kuhn, Tatler, Find-
lay, & Cole, 2007), or the probability of saccades during 
film edits (Smith & Henderson, 2008). The focus of the 

present article, however, is on studies of eye movements 
toward the dynamic objects within their stimuli. There are 
several studies that have recorded eye movements during a 
multiple-object tracking task (Fehd & Seiffert, 2008; Huff, 
Papenmeier, Jahn, & Hesse, 2009; Zelinsky & Neider, 
2008). During multiple-object tracking, participants are 
asked to spread their visual attention spatially in order to 
track a particular number of independently moving targets 
among indistinguishable moving distractors (Pylyshyn & 
Storm, 1988). These studies investigated different modes 
of tracking, such as target jumping or center tracking, by 
analyzing the gaze positions in relation to the positions of 
the moving objects. Eyetracking has been used with more 
complex dynamic content, too. Landry, Sheridan, and 
Yufik (2001) recorded eye movements during a collision-
detection task using an air traffic control display.

But what makes the difference between analyzing eye 
movements in relation to static stimulus material or ana-
lyzing them in relation to dynamic stimulus material? 
Because of the dynamics, two new issues arise. First, 
there is another main eye-movement category beyond 
fixations and saccades: smooth pursuits (Rashbass, 
1961), a smooth movement of the eyes that keeps dy-
namic objects foveated. Most eye-movement algorithms 
have been constructed for distinguishing fixations and 
saccades only, however (Salvucci & Goldberg, 2000). 
Second, the objects change their positions permanently 
in relation to a reference frame such as the screen. This 
makes it impossible to define a single set of AOIs as 
a static frame of reference for the moving stimuli with 
which to match the gaze data (see Figure 1). New ap-
proaches that do not rely on the classic analysis strat-
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representation of the whole object. Furthermore, this pro-
cedure neglects the existence of eye movements that are 
not related to the objects under investigation, because each 
and every gaze position is matched to the closest object.

An alternative approach is the use of dynamic AOIs. 
In his dissertation, Bednarik (2007) explicitly asked for 
the development of dynamic AOIs to allow analysis to 
become more automatic. Dynamic AOIs are areas in dy-
namic stimulus material that represent the position and 
dimensions of important content over time. There are two 
main approaches in the development of dynamic AOIs: 
online AOIs, which match gaze position with the stimuli 
during the recording, and offline AOIs, which match gaze 
data with the stimuli after the recording.

Online AOIs are typically realized with the use of game 
engines (Florin, 2008; Holmberg, 2007; Sasse, 2008; 
Sennersten et al., 2007). Game engines allow the real-
time visualization of virtual three-dimensional worlds, as 
is the case in first-person-shooter games such as Quake. 
The gaze positions are matched with the presented ob-
jects in real time; therefore, the static and moving objects 
within the virtual world themselves serve as AOIs. For 
example, while participants play a first-person-shooter 
game, several objects are presented: walls, moving oppo-
nents, weapons, and so forth. During the game, eye move-
ments are recorded, and gaze coordinates are matched 
with these objects. This approach is very time efficient. 
Unfortunately, it is usually implemented for a specific 
eyetracker or for eyetrackers of a specific company only. 
Furthermore, it is not possible to rerun the matching pro-
cess after removing some objects—for example, because 
they hindered gaze positions’ being matched with objects 
behind them, such as windows.

There are fewer solutions for dynamic offline AOIs 
than for dynamic online AOIs. The only implementation 
known to the authors (besides the one being presented in 
the present article) has been realized by SensoMotoric In-
struments in their analysis software BeGaze 2.1. Using 
their tool, one can overlay videos with polygons at vari-
ous time points. Between any two time points, dynamic 
AOIs are calculated by interpolating the size and positions 
of the polygons. This method allows for the use of dy-
namic AOIs with any desired content at the cost of adding 
the AOIs manually, which is very time consuming. As a 
more efficient alternative, we will introduce a tool called 
 DynAOI that allows for an automatic definition of offline 
AOIs for animations that are based on three-dimensional 
models.

Overview of DynAOI
Working with dynamic stimulus material, one often 

uses animations that are based on three-dimensional mod-
els. A three-dimensional model represents a computer-
 simulated virtual environment. Objects are animated 
within the three-dimensional model and are then ren-
dered to two-dimensional video files from the point of 
view of a virtual camera within the three- dimensional 
model. When using eyetrackers, the video files are pre-
sented and eye movements are recorded relative to the 
two-dimensional video files; however, it is not possible 

egies for static stimulus material therefore need to be 
developed.

Below, we will give an overview of existing approaches; 
describe the main features of DynAOI, including its im-
plementation; and report on our validation study.

Overview of Existing Approaches
For research on eye movements toward dynamic stimuli 

there already exist several approaches dealing with these 
two issues—namely, the existence of smooth pursuits and 
the matching of eye movements with moving objects. 
Reimer and Sodhi (2006) worked on the first issue, the 
existence of smooth pursuits, by developing an algorithm 
that is capable of identifying the three eye-movement cat-
egories: fixations, saccades, and smooth pursuits. Using 
their algorithm, one can reduce the large amount of raw 
data to fewer data points representing eye movements of 
these categories. Thereafter, these identified eye move-
ments need to be matched with the dynamic environment 
manually.

This is where the second issue of matching the recorded 
gaze positions with the moving objects arises. Several ap-
proaches attempt to deal with this problem. All of them 
work on the raw data (gaze positions) recorded by the 
eyetracker. A very basic method is the use of screen re-
cordings. The dynamic stimuli that are presented on the 
screen are recorded, and a marker—such as a red ring— 
representing the participant’s gaze is overlaid. The gaze 
data are matched with the relating objects manually using 
inspection of the video data (see, e.g., Sennersten, 2004). 
This process is very time consuming, however. Another 
approach is to use a shortest distance rule (Fehd &  Seiffert, 
2008; Zelinsky & Neider, 2008). For each point in time, 
the distance between the gaze position and a central posi-
tion of each object is calculated. The object closest to the 
gaze position is the one that is counted as having been 
“looked at.” This approach ignores the dimensions of the 
objects by taking the central position of each object as the 

Figure 1. Example of eye movements in relation to dynamic 
stimulus material that cannot be analyzed using static AOIs. At 
both points in time, the gaze position at “X” would be matched 
with the static AOI; but at time t1 it represents the cylinder, and 
at time t2 it represents the sphere, making it meaningless across 
the whole trial if one is interested in distinguishing eye movements 
to the cylinder and sphere.
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Blender was chosen as a development platform for three 
main reasons. First, it is available as open-source software 
and is supported by a very active community. This guar-
antees an active development and allows for the modifica-
tion of core functionalities if necessary. Second, it offers a 
broad functionality of accessing and manipulating objects 
in the three-dimensional model using the open-source pro-
gramming language Python (www.python.org). This al-
lows for a straightforward implementation of the  DynAOI 
functionality using a set of scripts written in Python. And 
third, it offers a broad variety of import formats that allow 
the use of three-dimensional models created with different 
modeling software.

DynAOI was developed on, and was therefore tested on, 
a Windows platform. But it should be possible to port it 
easily to Mac OS X or Linux platforms, too, because both 
Blender and Python are available for those platforms.

Data format and matching output. When using 
DynAOI to match gaze data—recorded relative to two-
 dimensional video files—with the underlying three-
 dimensional model, the recorded raw data need to be ex-
ported from the recording software and then be converted 
to a file in the following format for each video clip: a 
comma-separated file with at least three columns using 
the headers “TIME,” “X,” and “Y” (as well as headers 
for any additional columns containing optional variables). 
The time 0 msec corresponds to the start of the video. The 
coordinates x and y must be given in pixels relative to the 
upper left corner of the video. Missing data are coded with 
the coordinates 21, 21. The required input data can be 
created easily from the raw data output of most eyetrack-

to match the gaze positions with the objects in the video 
files automatically. This is when DynAOI proves to be 
advantageous.  DynAOI is a set of scripts released as 
open-source software (https://launchpad.net/dynaoi). 
It matches the recorded gaze positions with the three-
 dimensional models underlying the presented video 
files. The two-dimensional gaze coordinates relative to 
the video file (see Figure 2A) are converted to the cor-
responding two-dimensional coordinates in the projec-
tion plane of the camera within the three-dimensional 
model (see Figure 2B). Thereafter, these coordinates 
are transformed into a three-dimensional ray represent-
ing all points within the three-dimensional model that 
would project onto the corresponding two-dimensional 
coordinates (see Figure 2C). All objects lying on this ray 
were potentially looked at. Accordingly, the dynamic 
three-dimensional objects themselves serve as dynamic 
AOIs for the two-dimensional video files that are pre-
sented at the eyetracker. With regard to three-dimensional 
objects serving as dynamic AOIs, the present approach 
of defining dynamic offline AOIs is similar to the use of 
game engines to produce dynamic online AOIs that was 
mentioned above. It does differ with respect to certain 
features, however, which we will discuss below, includ-
ing a discussion on how one might also use DynAOI with 
videos of real-world scenes.

Blender and Python as development platform. A 
large variety of three-dimensional modeling programs is 
used for the development of animations, including such 
programs as Autodesk 3ds Max (www.autodesk.com) 
and Blender (www.blender.org). For the present project, 

Figure 2. Transformation of a two-dimensional gaze position relative to the pre-
sented video file (A) into a two-dimensional gaze position relative to the view of the vir-
tual camera in the three-dimensional model (B) and, finally, into a three- dimensional 
ray representing all points in the three-dimensional model projecting on the two-
 dimensional gaze position (C).

2-D Gaze Position

3-D Ray
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AOI name. The visualization option allows for a visual 
inspection of the matching process. When it is enabled, 
the three-dimensional model is opened with Blender, and 
the matching process is shown. If the model was saved 
from the camera’s view, it looks similar to a gaze replay of 
raw data, with the differences that the three-dimensional 
model is shown instead of the two-dimensional video 
file and that the “looked at” (matched-with) object is 
highlighted. The AOI name option allows one to specify 
whether the name of the objects in the three-dimensional 
model or a property variable that is associated with them 
should be written as AOIMATCH to the output. The use of 
this option depends on the prior conception of the three-
dimensional model. The last option is described together 
with the other features of DynAOI below:

Automatic matching of gaze data with dynamic 1. 
and static objects.
Compatibility with virtually any eyetracker that 2. 
supports the export of raw data.
The option to include only a subset of objects into 3. 
the matching process (the “AOI Tracking Property” 
option in the user interface)—for example, exclud-
ing transparent objects such as windows.
Batch support: One can process all recordings that 4. 
are located in a specified folder.
Versatility: No changes to the Blender three-5. 
 dimensional model file are necessary.
Postrecording (offline) AOI matching: It is pos-6. 
sible to edit models to meet specific needs—for 
example, adjusting the size of objects (AOIs).

Using DynAOI with videos of real-world scenes. 
Certainly, researchers do not work only with animations 
derived from three-dimensional models on the computer. 
One might be interested in working with video files or an-
imations showing real world scenes, too. This is the case 
when using broadcasts of sporting events or clips from ed-
ited movies. DynAOI may be used with such material, too; 

ers. A script for Tobii ClearView and Tobii Studio output 
is included in the DynAOI package.

During the matching process, each data point is read 
from the input file, and the following procedure is carried 
out. First, the three-dimensional model is set to the cor-
responding time point (frame). Next, the gaze position is 
transformed into a three-dimensional ray using the projec-
tion matrix of the virtual camera that defines the mapping 
of three-dimensional coordinates to the two-dimensional 
video coordinates and vice versa (see Figure 2). Intersec-
tions with objects are looked for along this ray, but only 
within the clipping area of the camera—that is, the part 
of the three-dimensional model that is “recorded” by the 
virtual camera. The intersection closest to the camera that 
contains a matchable object (explained below) is counted 
as “looked at” and is written to the output. This object 
closest to the camera occludes any other objects lying on 
the ray, and it is therefore visible in the two-dimensional 
video file. There may be cases in which the front object 
is not of interest and an object behind it was actually 
meant to be looked at—for example, when one is visu-
ally tracking a car driving past a tree, and the tree blocks 
the view of the car. This is one of the strengths of using 
DynAOI and postrecording (offline) AOIs, as it allows for 
a subset of objects to be defined as matchable, treating 
the rest as invisible. For example, it is possible to remove 
the foremost object (such as the tree in front of the car) 
and to rerun the matching process. As objects move in 
the three- dimensional model, they often overlap in the 
camera projection; therefore, the objects in their actual 
size themselves serve as dynamic AOIs. If the AOI size 
is increased by default in order to account for noise in 
the eyetracking system, false matching results would be 
possible. For instance, a gaze position lying right next to 
an object that is close to the camera would be attributed to 
this object even though the participant looked at an object 
that was positioned at a greater depth at this specific po-
sition. If the stimulus material is designed to avoid such 
ambiguities, however, the AOIs can easily be enlarged by 
increasing the size of the objects serving as AOIs in the 
three-dimensional model.

The output file of DynAOI corresponds to the input file, 
extended by the following three columns: “ AOIMATCH,” 
“MATCH.NUMBER,” and “MATCH.DURATION.” 
 AOIMATCH holds the name of the “looked at” object or 
the value of a specified property variable associated with 
the object. In the case that no object was looked at, it stays 
empty. MATCH.NUMBER is a counter of changes to the 
AOIMATCH variable, comparable to a fixation number 
measure. Finally, MATCH.DURATION holds the time 
from the first match on an AOI to the last gaze that is 
still related to the AOI before the viewer looks somewhere 
else.

Naturally, there is also a batch mode allowing for a 
quick match of gaze data to AOIs for the whole experi-
ment with a number of participants looking at different 
animations or movies.

User interface and features of DynAOI. The user 
interface of DynAOI (see Figure 3) allows for the follow-
ing settings: visualization, AOI tracking property, and 

Figure 3. User interface of DynAOI.
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three-dimensional model. Although these techniques have 
been restricted to use in specialized studios in the past, 
new developments allow for the use of motion capture 
in everyday surroundings (Vlasic et al., 2007). Extend-
ing this approach to use markers with arbitrary motion 
and to track the position, along with rotation and zoom, 
of the camera, would provide for simultaneous recording 
of a video and a three-dimensional model of a real-world 
scene. The three-dimensional model of the scene could 
then allow DynAOI to use the real-world objects as static 
and dynamic AOIs.

VAlIDATIOn OF DynAOI

We conducted a study in order to validate the perfor-
mance of DynAOI. For this purpose, a short animation 
was created. Participants were instructed to view it freely 
or to look at a specified object.

Method
Participants. Twenty students from the University of Tübingen 

(mean age 5 26.9 years) participated in this experiment. They re-
ported normal or corrected-to-normal vision. All participants were 
compensated for their participation.

Apparatus and Stimuli. A Tobii 1750 Eye Tracker (refresh rate, 
60 Hz) was used for the presentation of stimuli and the record-
ing of eye movements at 50 Hz. Spatial accuracy is specified 
with 0.5 deg. A chin- and headrest ensured that participants kept 
a distance of 60 cm from the screen. The stimulus consisted of a 
video file created using the three-dimensional modeling software 
Blender. The video lasted 33 sec and showed three objects (cube, 
sphere, and cylinder) moving at the trajectories that are depicted 
in Figure 5. The cube, sphere, and cylinder moved at mean (and 
peak) velocities of 2.6 deg/sec (5.2 deg/sec), 2.9 deg/sec (4.9 deg/
sec), and 11.0 deg/sec (21.7 deg/sec), respectively. They subtended 
the following degrees of visual angle: 3.1 deg (undistorted cube 
face’s edge length), 3.1 deg (diameter of sphere), and 2.1 3 1.2 deg 
(height 3 width of cylinder). A blue background was used, and the 
video files were presented in full-screen mode at a resolution of 
1,280 3 1,024 pixels.

Procedure and Design. After reading the instructions, partic-
ipants were asked to put their head onto a chin- and headrest. A 
9-point calibration procedure was performed. Thereafter, an instruc-
tion screen, followed by the video (illustrated in Figure 5) was shown 
four times. Participants viewed the same video four times, with the 
following instructions in succession: “View freely,” “Track the red 
cube,” “Track the blue sphere,” and “Track the black cylinder.” The 
experiment took approximately 10 min to complete.

however, some manual work needs to be done first. The 
three-dimensional model of the scene needs to be derived 
from the video data, since that model must be matched 
with gaze data. One method of doing so is to model some 
important objects and their trajectories manually as dy-
namic AOIs. To accomplish this, the video may be loaded 
into Blender. Then, the important content is approximated 
by some simple objects (e.g., spheres, cubes, or cuboids) 
that are added to a three-dimensional scene (see Figure 4). 
These objects may be animated by defining their positions 
at important key frames, with their intervening positions 
interpolated. This process of modeling the real-world 
scene may be very simple if the underlying trajectories 
are not too complex. In this case, the trajectories of the 
modeled objects determine not only their position but 
also their size in the camera projection, since they move 
the objects closer to the camera or farther away from it. 
The process of modeling a real-world scene may become 
very complex in the case of moving cameras or filmic cuts 
with abrupt viewpoint changes, however. Furthermore, 
this process of modeling a real-world scene can be very 
time consuming, so some additional tools supporting this 
process would be helpful and might be implemented in 
future versions of DynAOI.

Some approaches already exist that could support this 
process of creating a three-dimensional model of videos 
showing real-world scenes—that is, methods concerned 
with the automatic reconstruction of three-dimensional 
models from two-dimensional image sequences of static 
or dynamic scenes that have been recorded by a camera 
(see, e.g., Avidan & Shashua, 2000; Han & Kanade, 2004; 
Pollefeys, Koch, Vergauwen, & Van Gool, 2000). There is 
one active project attempting to implement some methods 
for three-dimensional reconstruction, or at least the recon-
struction of the camera movement, into Blender (http://
code.google.com/p/libmv/). This would be very helpful 
for the efficient use of videos of real-world scenes with 
DynAOI, allowing one to match gaze data with the actual 
objects depicted in a video.

Another approach for supporting the construction of 
three-dimensional models for videos of real-world scenes 
is the use of motion-capture techniques. Usually, human 
motion—by an actor, for example—is recorded using 
some kind of markers and is used to animate a virtual 

Figure 4. Relevant content of a real-world scene (left) approximated by three-dimensional objects (middle) used as static and dy-
namic AOIs (right).
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were matched with an AOI by the total number of re-
corded gaze points separately for each instruction condi-
tion (see Figure 6).

For each instruction condition, the differences in pro-
portion matched between the AOIs were tested using 
three separate two-tailed paired t tests with a Bonferroni-
 corrected alpha criterion of 1.67% (see Table 1). In the 
view freely condition, eye movements were distributed 
among the AOIs, with the sphere being looked at more 
than the cube, and both being looked at more than the 
cylinder [all ts(18) $ 3.19, ps # .005]. This gaze pat-
tern represents the spatial and dynamic structure of the 

Results and Discussion
A first inspection of the gaze replays revealed that 

1 participant misunderstood the “track the blue sphere” 
instruction and actually tracked the black cylinder. This 
participant was therefore excluded from the following 
analysis.

The recorded eye-movement data were matched 
with the dynamic AOIs using DynAOI and the three-
 dimensional Blender model underlying the presented 
video file. Thereafter, the dependent measure proportion 
matched was computed for the three AOIs (cube, sphere, 
and cylinder) by dividing the number of gaze points that 

Figure 5. Trajectories of the objects in the video that was presented to participants. On the left are the trajectories of the sphere and 
the cube. The sphere traveled the depicted trajectory twice. On the right is the trajectory of the cylinder. All objects moved simultane-
ously, and trajectories are depicted separately for purposes of illustration only. note that the blue background that was used in the 
study was removed for illustration purposes.
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above the peak velocity of the fastest object of 21.7 deg/
sec, excluding the possibility of falsely detecting smooth-
pursuit eye movements as saccades. The mean number 
of saccades was higher in the track cylinder condition 
(171) than in the track cube (132) and track sphere (119) 
conditions [both t(18) $ 6.09, ps , .001], whereas there 
was no significant difference between the track cube and 
track sphere conditions [t(18) 5 1.28, p 5 .218]. Addi-
tionally, since the cylinder was smaller than the sphere 
and cube, eye movements that were directed toward the 
cylinder might have been located just next to it, leading to 
lower proportion-matched scores. Taking advantage of the 
offline AOI approach of DynAOI, the underlying three-
dimensional model was modified by doubling the size of 
the cylinder used as a dynamic AOI. Thereafter, a second 
matching process, using the modified model, revealed a 
significant increase in the proportion-matched score for 
the cylinder from .17 to .42 in the track cylinder condition 
[t(18) 5 22.82, p , .001]; therefore, part of the lower 
proportion-matched score for the tracked cylinder could 
be explained by the small size of the object. The tracked 
cylinder’s lower proportion-matched score relative to 
those for the tracked sphere and the tracked cube does 
not necessarily indicate that less attention was devoted 
to the quickly moving cylinder. As attention shifts to the 
target of a saccade prior to the occurrence of the saccade 
(see, e.g., Hoffman & Subramaniam, 1995; Posner, 1980; 
Shepherd, Findlay, & Hockey, 1986), it creates a dissocia-
tion of attentional and gaze distribution that, in the pres-
ent study, was higher for the cylinder object as a result of 
the higher number of saccades. Additionally, it is known 
from research on scene perception that viewers need to 
view a scene for at least 150 msec during each fixation in 
order to process it normally (Rayner et al., 2009). It would 
therefore be interesting to investigate the influence of the 
duration of gazes at dynamic AOIs on the processing of 
the content of the AOIs, thus gaining further insights into 
how to interpret the data obtained with DynAOI.

In order to explore the influence of noise in raw data 
on the outcome of the matching process with DynAOI, 
the raw data were smoothed using a running median with 
a window width of five data points—that is, 100 msec. 
Thereafter, the smoothed raw data were matched with the 
dynamic AOIs using DynAOI, producing new proportion-
matched scores. In each instruction condition, we com-
pared the smoothed and unsmoothed proportion-matched 
score for the instructed object using paired t tests. This 
showed a significant increase in matching quality for all 
three instruction conditions: track cube (unsmoothed, .76; 

video clip. Both size and trajectory of the moving objects 
determined the distribution of gazes. Object size is nega-
tively correlated with the number of errors when one tries 
to fixate an object (Ware & Mikaelian, 1987), which led 
to the fewest gazes on the black cylinder in the present 
experiment. Further, the “center-of-screen bias” was re-
sponsible for more gazes located on the blue sphere, be-
cause its trajectory was located nearest to the center of the 
screen (Brasel & Gips, 2008; Tatler, 2007; Tosi, Mecacci, 
& Pasquali, 1997).

Instructing participants to track the red cube caused 
higher proportion-matched scores for the cube than for the 
cylinder or the sphere [both ts(18) $ 25.25, ps , .001]. 
Furthermore, marginally more gaze data were related to 
the sphere than to the cylinder, reflecting gaze behavior in 
the baseline condition [t(18) 5 22.15, p 5 .046]. In the 
track sphere and track cylinder conditions, the specified 
object was looked at more than were the other objects [all 
ts(18) $ 11.08, ps , .001]. The difference between the 
two other objects was not significant in both cases [both 
ts(18) # 1.51, ps $ .150].

Even though the relation among the objects in the track 
cylinder condition was as one would expect given the in-
structions, the proportion-matched score for the cylinder 
(.17) was much lower than the proportion-matched scores 
for the sphere (.76) and the cube (.76) in the condition in 
which they were to be tracked [both ts(18) $ 19.45, p , 
.001], whereas there was no significant difference between 
the tracked sphere and tracked cylinder [t(18) 5 .12, p 5 
.905]. The lower number of gazes on the cylinder might be 
the result of two things: The cylinder moves much faster 
than the other two objects, and its trajectory shows a lot of 
acceleration and deceleration. To exclude the possibility 
of timing issues of the DynAOI tool that emerge with the 
faster moving cylinder only, a gaze-overlaid playback of 
the recording was compared to the DynAOI matching pro-
cess and showed that they were synchronous. As a result, 
this possibility could be rejected; however, the repetitive 
acceleration and deceleration of the cylinder might have 
caused the visual system to struggle to track the moving 
object because of the need for repetitive adjustments in the 
speed of the smooth pursuits and the need for corrective 
saccades (Rashbass, 1961). The gaze-overlaid playback 
was in accordance with this assumption, further showing 
predictive saccades to the upcoming position of the cylin-
der and therefore not lying on the cylinder too. In order to 
test statistically for an increase in saccades, we detected 
saccades using a velocity-based saccade- detection algo-
rithm with a velocity threshold of 50 deg/sec that is far 

Table 1 
Results of Two-Tailed Paired t Tests Between AOIs Under the Four Different Instruction 

Conditions, Tested Against the Bonferroni-Corrected Alpha Criterion of 1.67%

Condition

View Freely Track Cube Track Sphere Track Cylinder

Comparison  t(18)  p  t(18)  p  t(18)  p  t(18)  p

Cube–Cylinder 3.19 .005 26.69 ,.001 1.51 .150 213.75 ,.001
Cube–Sphere 26.50 ,.001 25.25 ,.001 220.54 ,.001 20.54 .593
Cylinder–Sphere  27.51  ,.001  22.15  .046  221.02  ,.001  11.08  ,.001



186    PaPenmeier and Huff

and instructions. When one is working with high-speed 
eyetracking devices, the closing and opening of the eyelid 
at the beginning and end of blinks results in position data 
that are biased downward. The raw data should therefore 
be preanalyzed, with the invalid position data surrounding 
blinks also marked as missing data. Furthermore, DynAOI 
is thus far restricted to monocular measurements. When 
multiple objects on different depth planes in the three-
dimensional model correspond to the gaze position, the 
object that is closest to the camera is counted as looked 
at. By extending DynAOI to use binocular gaze data and 
taking the vergence angle into account, one might be able 
to resolve this ambiguity and count an object at a certain 
depth plane as being looked at.

The validation study demonstrated the proper func-
tioning of DynAOI. In addition, it showed that the actual 
motion and size of objects need to be taken into account. 
The cylinder was the smallest object in the scene, and it 
showed a repetitive acceleration and deceleration. One or 
both of these factors caused gaze positions to be located 
just next to the object instead of exactly on it. The vali-
dation study demonstrated that in such cases one should 
consider enlarging the AOI. Since DynAOI works offline, 
this can be achieved easily by enlarging such objects in 
the three-dimensional model and rerunning the match-
ing process. This worked well for the present validation 
study, in which doubling the size of the cylinder explained 
a substantially higher number of eye movements directed 
toward it. Nevertheless, such modifications should always 
be based on theoretical and/or practical deliberations.

In summary, DynAOI allows for a highly efficient 
definition of dynamic AOIs, thus simplifying the analy-
sis of eye-movement data in relation to dynamic stimu-
lus material such as animations or movies, and its release 
as open-source software makes it available to interested 
researchers.
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